12 oct. 2015

Triathlon and Running Economy III

We have written on what it is confounding variables; nonetheless we came up short.  An article written in www.medscape.org helps to understand this subject better.  We just copied the introduction for you.  Unfortunately, the running research is full of confounding variables due to the complexity of running.

How Do You Know Which Health Care Effectiveness Research You Can Trust? A Guide to Study Design for the Perplexed CME
Stephen B. Soumerai, ScD; Douglas Starr, MS; Sumit Majumdar, MD, MPH, FRCPC
Editor’s Note: The purpose of this Editor’s Choice article is translational in nature. It is intended to illustrate some of the most common examples of potential study bias to help policy makers, journalists, trainees, and the public understand the strengths and weaknesses of various types of healthcare research and the kinds of study designs that are most trustworthy. It is neither a comprehensive guide nor a standard research methods article. The authors intend to add to these examples of bias in research designs in future brief and easy-to-understand articles designed to show both the scientific community and the broader population why caution is needed in understanding and accepting the results of research that may have profound and long-lasting effects on health policy and clinical practice.
Evidence is mounting that publication in a peer-reviewed medical journal does not guarantee a study’s validity.[1]Many studies of healthcare effectiveness do not show the cause-and-effect relationships that they claim. They have faulty research designs. Mistaken conclusions later reported in the news media can lead to wrong-headed policies and confusion among policy makers, scientists, and the public. Unfortunately, little guidance exists to help distinguish good study designs from bad ones, the central goal of this article.
There have been major reversals of study findings in recent years. Consider the risks and benefits of postmenopausal hormone replacement therapy (HRT). In the 1950s, epidemiological studies suggested higher doses of HRT might cause harm, particularly cancer of the uterus.[2] In subsequent decades, new studies emphasized the many possible benefits of HRT, particularly its protective effects on heart disease — the leading killer of North American women. The uncritical publicity surrounding these studies was so persuasive that by the 1990s, about half the postmenopausal women in the United States were taking HRT, and physicians were chastised for under-prescribing it. Yet in 2003, the largest randomized controlled trial (RCT) of HRT among postmenopausal women found small increases in breast cancer and increased risks of heart attacks and strokes, largely offsetting any benefits such as fracture reduction.[3]
The reason these studies contradicted each other had less to do with the effects of HRT than the difference in studydesigns, particularly whether they included comparable control groups and data on preintervention trends. In the HRT case, health-conscious women who chose to take HRT for health benefits differed from those who did not — for reasons of choice, affordability, or pre-existing good health.[4] Thus, although most observational studies showed a “benefit” associated with taking HRT, findings were undermined because the study groups were not comparable. These fundamental nuances were not reported in the news media.
Another pattern in the evolution of science is that early studies of new treatments tend to show the most dramatic, positive health effects, and these effects diminish or disappear as more rigorous and larger studies are conducted.[5]As these positive effects decrease, harmful side effects emerge. Yet the exaggerated early studies, which by design tend to inflate benefits and underestimate harms, have the most influence.
Rigorous design is also essential for studying health policies, which essentially are huge real-world experiments.[1]Such policies, which may affect tens of millions of people, include insurance plans with very high patient deductible costs or Medicare’s new economic penalties levied against hospitals for “preventable” adverse events.[6] We know little about the risks, costs, or benefits of such policies, particularly for the poor and the sick. Indeed, the most credible literature syntheses conducted under the auspices of the international Cochrane Collaboration commonly exclude from evidence 50% to 75% of published studies because they do not meet basic research design standards required to yield trustworthy conclusions (eg, lack of evidence for policies that pay physicians to improve quality of medical care).[7,8]
This article focuses on a fundamental question: which types of healthcare studies are most trustworthy? That is, which study designs are most immune to the many biases and alternative explanations that may produce unreliable results?[9] The key question is whether the health “effects” of interventions — such as drugs, technologies, or health and safety programs — are different from what would have happened anyway (ie, what happened to a control group). Our analysis is based on more than 75 years of proven research design principles in the social sciences that have been largely ignored in the health sciences.[9] These simple principles show what is likely to reduce biases and systematic errors. We will describe weak and strong research designs that attempt to control for these biases. Those examples, illustrated with simple graphics, will emphasize 3 overarching principles:
  1. No study is perfect. Even the most rigorous research design can be compromised by inaccurate measures and analysis, unrepresentative populations, or even bad luck (“chance”). But we will show that most problems of bias are caused by weak designs yielding exaggerated effects.
  2. “You can’t fix by analysis what you bungled by design”.[10] Research design is too often neglected, and strenuous statistical machinations are then needed to “adjust for” irreconcilable differences between study and control groups. We will show that such differences are often more responsible for any differences (effects) than is the health service or policy of interest.
  3. Publishing innovative but severely biased studies can do more harm than good. Sometimes researchers may publish overly definitive conclusions using unreliable study designs, reasoning that it is better to have unreliable data than no data at all and that the natural progression of science will eventually sort things out. We do not agree. We will show how single, flawed studies, combined with widespread news media attention and advocacy by special interests, can lead to ineffective or unsafe policies.[1]
The case examples in this article describe how some of the most common biases and study designs affect research on important health policies and interventions, such as comparative effectiveness of various medical treatments, cost-containment policies, and health information technology.
The examples include visual illustrations of common biases that compromise a study’s results, weak and strong design alternatives, and the lasting effects of dramatic but flawed early studies. Generally, systematic literature reviews provide more conservative and trustworthy evidence than any single study, and conclusions of such reviews of the broad evidence will also be used to supplement the results of a strongly designed study. Finally, we illustrate the impacts of the studies on the news media, medicine, and policy.


Aucun commentaire:

Enregistrer un commentaire